10 research outputs found

    Deep Visual Instruments: Realtime Continuous, Meaningful Human Control over Deep Neural Networks for Creative Expression

    Get PDF
    In this thesis, we investigate Deep Learning models as an artistic medium for new modes of performative, creative expression. We call these Deep Visual Instruments: realtime interactive generative systems that exploit and leverage the capabilities of state-of-the-art Deep Neural Networks (DNN), while allowing Meaningful Human Control, in a Realtime Continuous manner. We characterise Meaningful Human Control in terms of intent, predictability, and accountability; and Realtime Continuous Control with regards to its capacity for performative interaction with immediate feedback, enhancing goal-less exploration. The capabilities of DNNs that we are looking to exploit and leverage in this manner, are their ability to learn hierarchical representations modelling highly complex, real-world data such as images. Thinking of DNNs as tools that extract useful information from massive amounts of Big Data, we investigate ways in which we can navigate and explore what useful information a DNN has learnt, and how we can meaningfully use such a model in the production of artistic and creative works, in a performative, expressive manner. We present five studies that approach this from different but complementary angles. These include: a collaborative, generative sketching application using MCTS and discriminative CNNs; a system to gesturally conduct the realtime generation of text in different styles using an ensemble of LSTM RNNs; a performative tool that allows for the manipulation of hyperparameters in realtime while a Convolutional VAE trains on a live camera feed; a live video feed processing software that allows for digital puppetry and augmented drawing; and a method that allows for long-form story telling within a generative model's latent space with meaningful control over the narrative. We frame our research with the realtime, performative expression provided by musical instruments as a metaphor, in which we think of these systems as not used by a user, but played by a performer

    Collaborative creativity with Monte-Carlo Tree Search and Convolutional Neural Networks

    Get PDF
    We investigate a human-machine collaborative drawing environment in which an autonomous agent sketches images while optionally allowing a user to directly influence the agent's trajectory. We combine Monte Carlo Tree Search with image classifiers and test both shallow models (e.g. multinomial logistic regression) and deep Convolutional Neural Networks (e.g. LeNet, Inception v3). We found that using the shallow model, the agent produces a limited variety of images, which are noticably recogonisable by humans. However, using the deeper models, the agent produces a more diverse range of images, and while the agent remains very confident (99.99%) in having achieved its objective, to humans they mostly resemble unrecognisable 'random' noise. We relate this to recent research which also discovered that 'deep neural networks are easily fooled' \cite{Nguyen2015} and we discuss possible solutions and future directions for the research

    Real-time interactive sequence generation and control with Recurrent Neural Network ensembles

    Full text link
    Recurrent Neural Networks (RNN), particularly Long Short Term Memory (LSTM) RNNs, are a popular and very successful method for learning and generating sequences. However, current generative RNN techniques do not allow real-time interactive control of the sequence generation process, thus aren’t well suited for live creative expression. We propose a method of real-time continuous control and ‘steering’ of sequence generation using an ensemble of RNNs and dynamically altering the mixture weights of the models. We demonstrate the method using character based LSTM networks and a gestural interface allowing users to ‘conduct’ the generation of tex

    Real-time interactive sequence generation and control with Recurrent Neural Network ensembles

    Get PDF
    Recurrent Neural Networks (RNN), particularly Long Short Term Memory (LSTM) RNNs, are a popular and very successful method for learning and generating sequences. However, current generative RNN techniques do not allow real-time interactive control of the sequence generation process, thus aren’t well suited for live creative expression. We propose a method of real-time continuous control and ‘steering’ of sequence generation using an ensemble of RNNs and dynamically altering the mixture weights of the models. We demonstrate the method using character based LSTM networks and a gestural interface allowing users to ‘conduct’ the generation of text

    Learning to See: You Are What You See

    Get PDF
    We present a visual instrument developed as part of the creation of the artwork Learning to See. The artwork explores bias in artificial neural networks and provides mechanisms for the manipulation of specifically trained–for real-world representations. The exploration of these representations acts as a metaphor for the process of developing a visual understanding and/or visual vocabulary of the world. These representations can be explored and manipulated in real time, and have been produced in such a way so as to reflect specific creative perspectives that call into question the relationship between how both artificial neural networks and humans may construct meaning

    Deep Meditations: Controlled navigation of latent space

    Get PDF
    We introduce a method which allows users to creatively explore and navigate the vast latent spaces of deep generative models. Specifically, our method enables users to discover and design trajectories in these high dimensional spaces, to construct stories, and produce time-based media such as videos—with meaningful control over narrative. Our goal is to encourage and aid the use of deep generative models as a medium for creative expression and story telling with meaningful human control. Our method is analogous to traditional video production pipelines in that we use a conventional non-linear video editor with proxy clips, and conform with arrays of latent space vectors. Examples can be seen at http://deepmeditations.ai

    Mixed-Initiative Creative Interfaces

    Get PDF
    Enabled by artificial intelligence techniques, we are witnessing the rise of a new paradigm of computational creativity support: mixed-initiative creative interfaces put human and computer in a tight interactive loop where each suggests, produces, evaluates, modifies, and selects creative outputs in response to the other. This paradigm could broaden and amplify creative capacity for all, but has so far remained mostly confined to artificial intelligence for game content generation, and faces many unsolved interaction design challenges. This workshop therefore convenes CHI and game researchers to advance mixed-initiative approaches to creativity support

    Art and the science of generative AI: A deeper dive

    Full text link
    A new class of tools, colloquially called generative AI, can produce high-quality artistic media for visual arts, concept art, music, fiction, literature, video, and animation. The generative capabilities of these tools are likely to fundamentally alter the creative processes by which creators formulate ideas and put them into production. As creativity is reimagined, so too may be many sectors of society. Understanding the impact of generative AI - and making policy decisions around it - requires new interdisciplinary scientific inquiry into culture, economics, law, algorithms, and the interaction of technology and creativity. We argue that generative AI is not the harbinger of art's demise, but rather is a new medium with its own distinct affordances. In this vein, we consider the impacts of this new medium on creators across four themes: aesthetics and culture, legal questions of ownership and credit, the future of creative work, and impacts on the contemporary media ecosystem. Across these themes, we highlight key research questions and directions to inform policy and beneficial uses of the technology.Comment: This white paper is an expanded version of Epstein et al 2023 published in Science Perspectives on July 16, 2023 which you can find at the following DOI: 10.1126/science.adh445
    corecore